Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1257321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022524

RESUMO

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.


Assuntos
Artrite Reumatoide , Doenças Inflamatórias Intestinais , Lúpus Eritematoso Sistêmico , Humanos , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , Resultado do Tratamento , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética
2.
Front Bioinform ; 3: 1197310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426048

RESUMO

As a conceptual model of disease mechanisms, a disease map integrates available knowledge and is applied for data interpretation, predictions and hypothesis generation. It is possible to model disease mechanisms on different levels of granularity and adjust the approach to the goals of a particular project. This rich environment together with requirements for high-quality network reconstruction makes it challenging for new curators and groups to be quickly introduced to the development methods. In this review, we offer a step-by-step guide for developing a disease map within its mainstream pipeline that involves using the CellDesigner tool for creating and editing diagrams and the MINERVA Platform for online visualisation and exploration. We also describe how the Neo4j graph database environment can be used for managing and querying efficiently such a resource. For assessing the interoperability and reproducibility we apply FAIR principles.

3.
Front Immunol ; 14: 1282859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38414974

RESUMO

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos , Biologia de Sistemas , Simulação por Computador
4.
Genes (Basel) ; 13(2)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35205397

RESUMO

The Epstein-Barr virus (EBV) is a ubiquitous γ herpesvirus strongly associated with nasopharyngeal carcinomas, and the viral oncogenicity in part relies on cellular effects of the viral latent membrane protein 1 (LMP1). It was previously described that EBV strains B95.8 and M81 differ in cell tropism and the activation of the lytic cycle. Nonetheless, it is unknown whether LMP1 from these strains have different effects when expressed in nasopharyngeal cells. Thus, herein we evaluated the effects of EBV LMP1 derived from viral strains B95.8 and M81 and expressed in immortalized nasopharyngeal cells NP69SV40T in the regulation of 91 selected cellular miRNAs. We found that cells expressing either LMP1 behave similarly in terms of NF-kB activation and cell migration. Nonetheless, the miRs 100-5p, 192-5p, and 574-3p were expressed at higher levels in cells expressing LMP1 B95.8 compared to M81. Additionally, results generated by in silico pathway enrichment analysis indicated that LMP1 M81 distinctly regulate genes involved in cell cycle (i.e., RB1), mRNA processing (i.e., NUP50), and mitochondrial biogenesis (i.e., ATF2). In conclusion, LMP1 M81 was found to distinctively regulate miRs 100-5p, 192-5p, and 574-3p, and the in silico analysis provided valuable clues to dissect the molecular effects of EBV LMP1 expressed in nasopharyngeal cells.


Assuntos
Infecções por Vírus Epstein-Barr , MicroRNAs , Neoplasias Nasofaríngeas , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Proteínas de Membrana , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas Virais/genética
6.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664389

RESUMO

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Assuntos
COVID-19/imunologia , Biologia Computacional/métodos , Bases de Dados Factuais , SARS-CoV-2/imunologia , Software , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Gráficos por Computador , Citocinas/genética , Citocinas/imunologia , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/virologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/virologia , Mapeamento de Interação de Proteínas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Tratamento Farmacológico da COVID-19
7.
Bioinformatics ; 36(24): 5712-5718, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32637990

RESUMO

MOTIVATION: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. RESULTS: Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. AVAILABILITY AND IMPLEMENTATION: The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Causalidade , Humanos
8.
Cells ; 9(8)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707870

RESUMO

Nile tilapia is the third most cultivated fish worldwide and a novel model species for evolutionary studies. Aiming to improve productivity and contribute to the selection of traits of economic impact, biotechnological approaches have been intensively applied to species enhancement. In this sense, recent studies have focused on the multiple roles played by microRNAs (miRNAs) in the post-transcriptional regulation of protein-coding genes involved in the emergence of phenotypes with relevance for aquaculture. However, there is still a growing demand for a reference resource dedicated to integrating Nile Tilapia miRNA information, obtained from both experimental and in silico approaches, and facilitating the analysis and interpretation of RNA sequencing data. Here, we present an open repository dedicated to Nile Tilapia miRNAs: the "miRTil database". The database stores data on 734 mature miRNAs identified in 11 distinct tissues and five key developmental stages. The database provides detailed information about miRNA structure, genomic context, predicted targets, expression profiles, and relative 5p/3p arm usage. Additionally, miRTil also includes a comprehensive pre-computed miRNA-target interaction network containing 4936 targets and 19,580 interactions.


Assuntos
Ciclídeos/genética , Ciclídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Animais , Sequência de Bases , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Bioinformatics ; 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31710663

RESUMO

SUMMARY: The BioGateway App is a Cytoscape (version 3) plugin designed to provide easy query access to the BioGateway RDF triple store, which contains functional and interaction information for proteins from several curated resources. For explorative network building, we have added a comprehensive dataset with regulatory relationships of mammalian DNA binding transcription factors and their target genes, compiled both from curated resources and from a text mining effort. Query results are visualised using the inherent flexibility of the Cytoscape framework, and network links can be checked against curated database records or against the original publication. AVAILABILITY: Install through the Cytoscape application manager or visit www.biogateway.eu for download and tutorial documents. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.

10.
Plant Cell Rep ; 36(6): 887-900, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260122

RESUMO

KEY MESSAGE: Overexpression of a tomato TCTP impacts plant biomass production and performance under stress. These phenotypic alterations were associated with the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. The translationally controlled tumor protein (TCTP) is a multifaceted and highly conserved eukaryotic protein. In plants, despite the existence of functional data implicating this protein in cell proliferation and growth, the detailed physiological roles of many plant TCTPs remain poorly understood. Here we focused on a yet uncharacterized TCTP from tomato (SlTCTP). We show that, when overexpressed in tobacco, SlTCTP may promote plant biomass production and affect performance under salt and osmotic stress. Transcriptomic analysis of the transgenic plants revealed the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. This induced photosynthetic gene expression was paralleled by an increase in the photosynthetic rate and stomatal conductance of the transgenic plants. Moreover, the transcriptional modulation of genes involved in ABA-mediated regulation of stomatal movement was detected. On the other hand, genes playing a pivotal role in ethylene biosynthesis were found to be down-regulated in the transgenic lines, thus suggesting deregulated ethylene accumulation in these plants. Overall, these results point to a role of TCTP in photosynthesis and hormone signaling.


Assuntos
Perfilação da Expressão Gênica/métodos , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética
11.
BMC Bioinformatics ; 17: 322, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27557880

RESUMO

BACKGROUND: Many centrality measures have been proposed to mine and characterize the correlations between network topological properties and protein essentiality. However, most of them show limited prediction accuracy, and the number of common predicted essential proteins by different methods is very small. RESULTS: In this paper, an ensemble framework is proposed which integrates gene expression data and protein-protein interaction networks (PINs). It aims to improve the prediction accuracy of basic centrality measures. The idea behind this ensemble framework is that different protein-protein interactions (PPIs) may show different contributions to protein essentiality. Five standard centrality measures (degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and subgraph centrality) are integrated into the ensemble framework respectively. We evaluated the performance of the proposed ensemble framework using yeast PINs and gene expression data. The results show that it can considerably improve the prediction accuracy of the five centrality measures individually. It can also remarkably increase the number of common predicted essential proteins among those predicted by each centrality measure individually and enable each centrality measure to find more low-degree essential proteins. CONCLUSIONS: This paper demonstrates that it is valuable to differentiate the contributions of different PPIs for identifying essential proteins based on network topological characteristics. The proposed ensemble framework is a successful paradigm to this end.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Expressão Gênica , Genoma Fúngico , Fases de Leitura Aberta , Mapas de Interação de Proteínas , Proteínas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Front Physiol ; 7: 75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014079

RESUMO

Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research.

13.
PLoS One ; 10(6): e0130744, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106890

RESUMO

Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.


Assuntos
Regulação da Expressão Gênica de Plantas , Canais Iônicos/biossíntese , Proteínas Mitocondriais/biossíntese , Nicotiana/genética , Transcriptoma , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Homeostase , Mitocôndrias/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , Fotossíntese , Plantas Geneticamente Modificadas/genética , RNA/genética , Plântula , Análise de Sequência de RNA , Proteína Desacopladora 1
14.
Parasit Vectors ; 6(1): 335, 2013 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-24267406

RESUMO

BACKGROUND: The apicomplexan parasite Neospora caninum causes neosporosis, a disease that leads to abortion or stillbirth in cattle, generating an economic impact on the dairy and beef cattle trade. As an obligatory intracellular parasite, N. caninum needs to invade the host cell in an active manner to survive. The increase in parasite cytosolic Ca2+ upon contact with the host cell mediates critical events, including the exocytosis of phylum-specific secretory organelles and the activation of the parasite invasion motor. Because invasion is considered a requirement for pathogen survival and replication within the host, the identification of secreted proteins (secretome) involved in invasion may be useful to reveal interesting targets for therapeutic intervention. METHODS: To chart the currently missing N. caninum secretome, we employed mass spectrometry-based proteomics to identify proteins present in the N. caninum tachyzoite using two different approaches. The first approach was identifying the proteins present in the tachyzoite-secreted fraction (ESA). The second approach was determining the relative quantification through peptide stable isotope labelling of the tachyzoites submitted to an ethanol secretion stimulus (discharged tachyzoite), expecting to identify the secreted proteins among the down-regulated group. RESULTS: As a result, 615 proteins were identified at ESA and 2,011 proteins quantified at the discharged tachyzoite. We have analysed the connection between the secreted and the down-regulated proteins and searched for putative regulators of the secretion process among the up-regulated proteins. An interaction network was built by computational prediction involving the up- and down-regulated proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000424. CONCLUSIONS: The comparison between the protein abundances in ESA and their measure in the discharged tachyzoite allowed for a more precise identification of the most likely secreted proteins. Information from the network interaction and up-regulated proteins was important to recognise key proteins potentially involved in the metabolic regulation of secretion. Our results may be helpful to guide the selection of targets to be investigated against Neospora caninum and other Apicomplexan organisms.


Assuntos
Espectrometria de Massas , Neospora/química , Proteoma/análise , Proteômica , Proteínas de Protozoários/análise , Marcação por Isótopo
15.
PLoS One ; 8(10): e77521, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204854

RESUMO

Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI). This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved in cancer research interested in detecting signaling networks most prone to contribute with the emergence of malignant phenotype.


Assuntos
Carcinogênese/genética , Redes Reguladoras de Genes/genética , Neoplasias/genética , Transdução de Sinais/genética , Biologia Computacional/métodos , Humanos , Mutação/genética
16.
PLoS One ; 8(2): e57328, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437369

RESUMO

The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites.


Assuntos
Algoritmos , Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética , Modelos Genéticos , Elongação da Transcrição Genética , Proteínas Virais/genética , Bacteriófago T7/metabolismo , Simulação por Computador , RNA Polimerases Dirigidas por DNA/metabolismo , Método de Monte Carlo , Processos Estocásticos , Termodinâmica , Proteínas Virais/metabolismo
17.
Proc Natl Acad Sci U S A ; 100(23): 13418-23, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14593198

RESUMO

Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximately 23,500 genes, of which only approximately 1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.


Assuntos
Etiquetas de Sequências Expressas , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteoma , RNA Mensageiro/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Variação Genética , Humanos , Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA